Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1263329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727789

RESUMO

Background: Glioblastoma (GBM) is a malignant primary brain tumor. This study focused on exploring the exosome-related features of glioblastoma to better understand its cellular composition and molecular characteristics. Methods: Single-cell RNA sequencing (scRNA-seq) and spatial transcriptome RNA sequencing (stRNA-seq) were used to analyze the heterogeneity of glioblastomas. After data integration, cell clustering, and annotation, five algorithms were used to calculate scores for exosome-related genes(ERGs). Cell trajectory analysis and intercellular communication analysis were performed to explore exosome-related communication patterns. Spatial transcriptome sequencing data were analyzed to validate the findings. To further utilize exosome-related features to aid in clinical decision-making, a prognostic model was constructed using GBM's bulk RNA-seq. Results: Different cell subpopulations were observed in GBM, with Monocytes/macrophages and malignant cells in tumor samples showing higher exosome-related scores. After identifying differentially expressed ERGs in malignant cells, pseudotime analysis revealed the cellular status of malignant cells during development. Intercellular communication analysis highlighted signaling pathways and ligand-receptor interactions. Spatial transcriptome sequencing confirmed the high expression of exosome-related gene features in the tumor core region. A prognostic model based on six ERGs was shown to be predictive of overall survival and immunotherapy outcome in GBM patients. Finally, based on the results of scRNA-seq and prognostic modeling as well as a series of cell function experiments, BARD1 was identified as a novel target for the treatment of GBM. Conclusion: This study provides a comprehensive understanding of the exosome-related features of GBM in both scRNA-seq and stRNA-seq, with malignant cells with higher exosome-related scores exhibiting stronger communication with Monocytes/macrophages. In terms of spatial data, highly scored malignant cells were also concentrated in the tumor core region. In bulk RNA-seq, patients with a high exosome-related index exhibited an immunosuppressive microenvironment, which was accompanied by a worse prognosis as well as immunotherapy outcomes. Prognostic models constructed using ERGs are expected to be independent prognostic indicators for GBM patients, with potential implications for personalized treatment strategies for GBM. Knockdown of BARD1 in GBM cell lines reduces the invasive and value-added capacity of tumor cells, and thus BARD1-positively expressing malignant cells are a risk factor for GBM patients.


Assuntos
Exossomos , Glioblastoma , MicroRNAs , Humanos , Prognóstico , Glioblastoma/genética , Exossomos/genética , Transcriptoma , Microambiente Tumoral/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases
2.
Cells Tissues Organs ; 212(2): 147-154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34695819

RESUMO

There is no authoritative characterization of the attributes of the hemolymph node (HLN) since Gibbes' first description in 1884. Early reports showed that HLN are found near the kidney in human and animals with the feature of numerous erythrocytes in sinuses. Subsequent studies mainly focused on anatomy and histology, such as the source, distribution, and quantity of erythrocytes in sinuses. Recent articles mentioned that the emergence of HLN was related to immunity, but there was no strong evidence to support this hypothesis. Therefore, it is still uncertain whether the HLN is an organ of anatomy, histology, or immunology. It has been found that the development of HLN could be elicited in the parathymic area by stimuli such as Escherichia coli, allogeneic breast cancer cells, and renal tissue that were injected/transplanted into the tail of rats in our pilot studies. In this study, the model of the HLN was established by transferring allogeneic renal tissue in the rat. Intrasinusoidal erythrocytes of the node were the component for producing a red macroscopic appearance, while macrophage-erythrocyte-lymphocyte rosettes were the major immunomorphological changes, reflecting the immune activity against the invasion of the allogeneic tissue within the node. Therefore, the HLN is an immunomorphological organ.


Assuntos
Hemolinfa , Linfonodos , Ratos , Humanos , Animais , Linfonodos/patologia , Rim , Transplante Homólogo , Eritrócitos
3.
Phys Rev Lett ; 126(21): 211803, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114849

RESUMO

We report constraints on light dark matter through its interactions with shell electrons in the PandaX-II liquid xenon detector with a total 46.9 tonnes/day exposure. To effectively search for these very low energy electron recoils, ionization-only signals are selected from the data. 1821 candidates are identified within an ionization signal range between 50 and 75 photoelectrons, corresponding to a mean electronic recoil energy from 0.08 to 0.15 keV. The 90% C.L. exclusion limit on the scattering cross section between the dark matter and electron is calculated with systematic uncertainties properly taken into account. Under the assumption of point interaction, we provide the world's most stringent limit within the dark matter mass range from 15 to 30 MeV/c^{2}, with the corresponding cross section from 2.5×10^{-37} to 3.1×10^{-38} cm^{2}.

4.
Phys Rev Lett ; 121(2): 021304, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085724

RESUMO

We search for nuclear recoil signals of dark matter models with a light mediator in PandaX-II, a direct detection experiment in the China Jinping underground laboratory. Using data collected in 2016 and 2017 runs, corresponding to a total exposure of 54 ton day, we set upper limits on the zero-momentum dark matter-nucleon cross section. These limits have a strong dependence on the mediator mass when it is comparable to or below the typical momentum transfer. We apply our results to constrain self-interacting dark matter models with a light mediator mixing with standard model particles, and set strong limits on the model parameter space for the dark matter mass ranging from 5 GeV to 10 TeV.

5.
Phys Rev Lett ; 119(18): 181302, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219592

RESUMO

We report a new search for weakly interacting massive particles (WIMPs) using the combined low background data sets acquired in 2016 and 2017 from the PandaX-II experiment in China. The latest data set contains a new exposure of 77.1 live days, with the background reduced to a level of 0.8×10^{-3} evt/kg/day, improved by a factor of 2.5 in comparison to the previous run in 2016. No excess events are found above the expected background. With a total exposure of 5.4×10^{4} kg day, the most stringent upper limit on the spin-independent WIMP-nucleon cross section is set for a WIMP with mass larger than 100 GeV/c^{2}, with the lowest 90% C.L. exclusion at 8.6×10^{-47} cm^{2} at 40 GeV/c^{2}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...